NEXT GENERATION ENGINEERED SAND FOR Concrete, Plaster & DMM (Technological Innovation For Replacement Of River Sand)

Technical Presentation for CPWD.
 Mr. Sanjay Nikam
 Principal Consultant of SKGC Group

INTRODUCTION – Shri Krishan Grit Co.

Dr. Sanjeev Gupta – Managing Director

skgc

- Established in year 2000. •
- Supply of Construction Building Materials including steel.
- Turnover 1200 Cr.

INTRODUCTION – Shri Krishan Grit Co.

- Approved by DMRC, RRTS, AAI, NHAI, PWD & many more.
- Owned mines.
- Production capacity 15,000 T/day (5 million T/year). <u>Highest Commercial</u> production in India.
- Technologically advance manufacturing facilities. (Metso, L&T – Kemco). (Ensures consistency in Quality & Quantity)
- Advance fleet management services.
- <u>1st & Only Company in India BIS</u> (IS:383) Certified for Aggregates and Sand.

INTRODUCTION – Mr. Sanjay Nikam

Education:

- B.E. Mech. Engg.
- PG in Industrial Safety
- PG in Management Studies

Training:

- Leadership Development Programs. (IMD, Luccane)
- Agg. & RMX Business .(Holcim)
- HSE Programs
- Holcim AGG Manager Course. (University Leicester, UK.) Life Members
- National Safety Council.
- MEAI.
- Bombay Chamber of Comm.- HSE
- Loss Prevention Association .

Present Professional	Work Ex	perience:
----------------------	---------	-----------

Year	Company	Position
2016 onwards	Suru09 Business Services	CEO & Principal Consultant
2018 onwards	Aggregates manufacturer as	sociation Director
 Industrial Segm Aggregate Fly ash Ready Mix Dry mix management Past Profession 	Ment: & M-Sand Concrete ortar Mal Work Experience:	 <u>Services:</u> Consulting Project Management Operations and Maintenance Technology Channel Partnership Safety
Year	Company	Position
2015-2016	Ultratech Cement Ltd.	V.P. Head-Aggregate Business
2011-2015	HOLCIM-SESA Ambuja / ACC Cement Ltd.	Regional AGG Support Manager Sr. V.P. (AGG & New Businesses)
2009-2011	Robo Silicon Pvt. Ltd.	Chief Operating Officer (AGG Business)
2000-2009	RMC Readymix (I) Ltd.	V.P. – Aggregate Business / Project
1995-2000	Clariant (India) Ltd.	Project Manager
1988-1995	BASF/Asian Paints Ltd.	Maintenance Manager

Visiting Faculty at Indian Institute of Technology, Mumbai

AGENDA

AGENDA

What is SAND ?

• How is Sand Quality Defined?

What is Sand's Gradation

- Fineness or Coarseness of Sand (Fineness Modulus of Sand)
- Filler Content (%age of Ultra-fines
 <150 & 75 microns)
- Particle <u>Shape</u> (Rounded or Angular & Flaky)

Cleanliness (Free from Clay / Silt)

Naturally occurring granular material

Composed of rock & mineral particles

- Sand composition depends on regional rock sources
- Material ranging from 75 μm to 4.75mm, (mostly in the size of 300 μm to 2mm)
- Major use: Construction, Glass making, filtration, sand blasting and, well, beach animation!

What is SAND?

SAND QUALITY ASPECTS AND ITS EFFECT ON CONCRETE

skgc

AGENDA

NATURAL SAND

• How do Natural Sand Deposits Occur?

INTFRNAL

- Natural sand is formed by natural physical and chemical weathering and erosion processes.
- The sand is then often transported from it's original position by the actions of water, wind or ice.
- This movement often causes the sand to stratify into different particle bands.

- Availability Difficult to get
- Quality No control
 - o Different sources
 - Possible contamination with deleterious material
 - Possible adulteration with soil/ clay/ silt
 - Coastal/ Marine sand may contain harmful chlorides
- Transportation Often costs more than the sand!
 - Long transportation = More trucks on the road = More pollution
- Environmental Damages: Irreparable
 - $\circ~$ Erosion of rivers at Natural Sand mining areas
 - $\circ~$ Damage to the bio diversity of the rivers/ river bed
- Natural Sand is not a renewable resource (Almost!)

High energy zone Course sand Medium energy zone medium sand Low energy zone fine sand

NATURAL SAND - Quality

- Inconsistent River Sand Gradation
 - River sand too coarse in Mumbai, required screening and other processing

Yamuna Sand too fine in Gradation

Impurities in River Sand

NATURAL SAND – Ecological Imbalance

SUSTAINABLE ALTERNATIVE TO RIVER SAND

- Ecological Imbalance
- Affecting Aquatic Life
- Reduction in Water Table
- Ground Water Depletion
- Water Scarcity

skgc

- Detrimental Effect on Civil Structures on Rivers (Bridges / Dams)
- Destruction of flora and fauna of surrounding areas
- Dredging / Transportation -> Pollution -> Higher Carbon Footprint

NATURAL SAND – Social Issues

Import Sand Mon Oct 26 2015 | PROPGUIDE

AGENDA

CRUSHED STONE SAND / Engineered Sand – Definition

- Why Crushed Stone Sand
 / Engineered Sand
 - Environmentally
 Friendly compare to
 Natural and River Sand
 - Consistent Quality
 - Low Clay Content
 - Gradation as per our requirement
 - Low and recycled rejection
 - West & South Cost Effective Solution.
 - North India

 Fine aggregates are referred to by many names – Crushed Stone Sand "definition" is required to improve our common understanding

Fine aggregate / sand is granular material able to pass through the 9mm (3/8") sieve, almost entirely passing the 4.75-millimeter (No. 4 or 3/16"in.) sieve, and predominantly retained on the 0.075 mm (200 mesh) or 0.063 mm (230 mesh) sieve, and resulting from natural disintegration and abrasion of rock or by reduction of suitable source material.

For use in asphalt 2 mm is the dividing point between coarse and fine aggregate. For use in concreting sand material less than 5 mm is used, and there are further restrictions on particle size distribution [BS 882; 1983]. *Goodquarry*

Natural sand is used to identify the material traditionally recovered from geologically recent deposits of sand-sized materials. Typically these deposits are from Quaternary deposits in streams, rivers, estuaries, lakes, lagoons or dunes.

<u>Engineered Sand</u> is defined as a <u>purpose-made crushed fine aggregate</u> produced from a suitable source material. Production generally involves crushing, screening and possibly washing. Separation into discrete fractions, recombining and <u>blending may be necessary</u>.

Guide to the Specification and Use of Manufactured Sand in Concrete - Cement Concrete & Aggregates Australia

Crusher fines / crusher dust are generally **not a purpose made crushed fine aggregate** and are often a nonspecification by-product from a crushing and screening process. They are generally a granular material able to pass through the 9mm (3/8") sieve, almost entirely passing the 4.75-millimeter (No 4 or 3/16"in.) They generally do not meet the gradation, cleanliness (clay and organic content), or particle shape requirement for use in RMX or concrete products.

Fines, silts, dust, micro-fines are material finer that 0.063/0.075mm, i.e. the silt and clay-sized fractions. *Geological Society of Engineering Special Publication no.* 17 Dust may be produced as a by-product in the stone or gravel crushing process.

Clay can be defined as particles smaller than 0.002 mm or 2 microns.

Slimes, sludge, slurry in aggregates often refers to material finer than 0.063/0.075mm suspended in water.

CRUSHED STONE SAND / Engineered Sand – Why ?

Why Crushed Stone Sand / Engineered Sand ?

- Consistent Quality : Since Manufactured from quarry the gradation and quality remains consistent throughout the project Product consistency allows more predictable mix to be produced than is achievable with natural sand due to normal natural variations in dug sand gradation. This means that end users of Crushed Stone Sand don't have to allow a safety factor to mitigate for natural gradation variation sand can achieve binder savings.
- > Availability : Due to manufacturing availability is never any issue.
- Zero Wastage : Due to manufacturing process zero wastage.
- Compressive Strength : Higher compressive strength compared to river sand by overcoming deficiencies like segregation, bleeding, honey combing, voids and capillary.
- Eco- Friendly : Engg. Sand is the only alternative to River Sand, with dredging of river sand ban.
- Economical: Usage of Engg -Sand can drastically reduce the cost since like river sand, it does not contain impurities and wastage is NIL. In International Construction Scenario, no river sand is used at all, only sand is manufactured and used, which gives superior strength and its cubical shape ensures significant reduction in the cement used in the concrete.
- Zero Presence of silt and clay : Natural sand is inherently high in silt and clay. It can be damaging for screed and concrete, if the sand is not sufficiently processed to bring down clay and other impurity content to acceptable levels.

- Crushed Stone Sand / Engineered Sand Facts
 - Engineered Crushed Stone Sand will have the following properties:
 - Continuous grading (4.75mm ~ 0.075mm).
 - $\circ~$ Cubical shape (We will see more info in the next slides)
 - $\circ~$ Good surface texture
 - Free of deleterious materials
 - All size fractions within the sand should be well represented.
 - A sand gradation should approximately be composed of:
 - $\circ~$ 1/3 of fine particles (minus 0.30mm).
 - $\circ~$ 1/3 of medium particles (0.30 to 1mm).
 - $\circ~$ 1/3 of coarse particles (1 to 4.75mm).

CRUSHED STONE SAND / Engineered Sand – Why ?

►Natural Sand... Why ???

- Shortage of natural river sand due to depletion of sources.
- Presence of mica and organic matter like shell.
- Presence of oversize +2.5mm particles.
- High percentage of silt, clay i.e.
 -150 microns.
- · Low Concrete strength.

Crushed Stone Sand /Engineered Sand

- Sand can be manufactured from crushed rock, quarry dust, overburden.
- Free from impurities
- Particle size can be controlled in crushing & Screening process.
- Classification removes -150 microns.
- High Concrete strength.
- Workability ?

CRUSHED STONE SAND / Engineered Sand – Application

Annex – sand processing guideline

	Key Issues for different Strength Class of Concrete / Mortar							
				Stre	ength Class of Conc	rete		
Issues		<30)MPa / Typical produ	ıcts	30-5	i0MPa / Typical Proc	lucts	>50MPa / Typical Products
		Readymix Concrete	Light Weight Concrete Blocks	Mortar	Concrete Elements	Shotcrete	Self Compacting Concrete (SCC)	Prestressed Concrete Slabs
	Relative Cost of final product	100	120	150	150	150	>200	>200
a S	Use of Additives	+	+	+	++	++	++	+++
cret	Water / Cement Ratio (w/c)	0.6	0.6	0.6	0.5	0.4 - 0.5	0.5	0.4
Prod	Complexness of concrete manufacturing process	+	++	++	+++	++	+++	+++
	Cement Requirement (kg/m ³)	250	250	250	300	300-500	300	350
8	Relative aggregate cost	+++	+++	++	+	++	+	+
and	Typical aggregate size fractions	0-32mm	0-32mm	0-4mm	0-20mm	0-6mm	0-20mm	0-20mm
Perform	Amount of filler (<0.075mm) in fine aggregate	0-15% depending on specification	0-15% depending on specification	10-20%	0-10%depending of specification	0-12% depending on the application	>10%, use of specialisted filler materials	0-5%
ncrete	Importance of >4mm aggregate shape	++	+	N/A	++	N/A	++	++
n Coi	Importance of <4mm aggregate shape	+++	++	+++	+++	+++	+++	+++
ance o	Importance of aggregate surface texture	++	+	+	++	++	+++	+++
flue	Importance of aggregate angularity	++	+	+++	++	++	+++	+++
2	Mineral composition	+	+	++	++	++	++	++
ate	Consistency of aggregate supply	++	++	++	++	+++	+++	+++
ළි	Need for sand treatment	+	+	+++	++	+	++	++
Agg	Aggregate Specification	ASTM, EN, etc	ASTM, EN, etc	ASTM, EN, etc	ASTM, EN, etc	ASTM, EN, etc	ASTM, EN etc	Internal specification
ete ies	Removal of dust coating from coarse aggregate	Less Common	Less Common	N/A	More Common	N/A	More Common	More Common
bert	Workability	+++	++	++	+++	++	++++	++
Col	Finishability	+++	++	+++	++	++	+++	++
- 4	Pumpability	++++	0	0	+	++++	+++	++

Legend:

0 = Has no effect

+ = Little or least effect

+++ = Largest or most significant effect N/A = Non-Applicable

CRUSHED STONE SAND / Engineered Sand - Gradation

- Evolution Of Sand Manufacturing Technologies:
- Plaster Sand and Concrete Sand Gradation Envelopes as per Standards

• Evolution Of Sand Manufacturing Technologies:

skgc

Desired Fineness Of Sand For Different Applications
 In simpler words...

(with uniform gradation and good percentage of 300 μ , 600 μ , 1mm **etc**)

Indian Sand Specs:

		Cumulative %	Passing Range	
IS Sieve Designation	Zone I	Zone II	Zone III	Zone IV
10mm	100	100	100	100
4.75mm	90~100	90 ~ 100	90 ~ 100	95 ~ 100
2.36mm	60~95	75 ~ 100	85 ~ 100	95 ~ 100
1.18mm	30 ~ 70	55 ~ 9 0	75 ~ 100	90 ~ 100
600 microns	15 ~ 34	35 ~ 59	60 ~ 79	80~100
300 microns	5 ~ 20	8~30	12 ~ 40	15 ~ 50
150 microns	0~10	0~10	0~10	0~15

Note: For crushed stone sands, the permissible limit of 150 uM is 20%

Increased Fineness

Construction Work	Desired Fineness Modulus of SAND
Concrete Works	2.5 to 3.1
Plastering Work	1.5 to 2.4
Brick Works	1.2 to 1.5

FM is Average Size of Sand Particles in a stockpile

CRUSHED STONE SAND / Engineered Sand - Shape

- Evolution Of Sand Manufacturing Technologies:
- Shape of Sand particles

Well Rounded / Equi-dimensional Shape of Sand Particles – A Must! This leads to ...

Better Workability/ Flow ability, Better Inter- Particle Locking -> Improved Strength; Lesser Voids and Reduced Cement Consumption

SHAPE OF CRUSHER DUST COMPARED TO GOOD QUALITY Crushed Stone Sand • Particle Shape

Flaky

Elongate d

Flaky & Elongated

Cubical

CRUSHED STONE SAND - Shape

- Particle Shape
 - Cubical shape improves particle packing.
 - Water demand is related to shape of the aggregates.

- Particle Shape
 - Effects of Crushed Stone Sand on Fresh Concrete:
 - $\ensuremath{\circ}$ Improved workability.
 - \odot Improved finishability.
 - \odot Improved particle packing.
 - $\,\circ\,$ Reduced bleeding (Internal bleeding).
 - Effects of Crushed Stone Sand on Hardened Concrete
 - Higher compressive strength and flexural strength for a given cement content.
 - $\,\circ\,$ Cubical aggregate gives optimum strength.
 - $\,\circ\,$ Reduced Shrinkage.

CRUSHED STONE SAND / Engineered Sand- Cleanliness

• Sand Manufacturing Technologies:

Cleanliness of Sand

 \odot Standards specify:

- Fine sand should consist of natural sand or crushed stone sand.
- It should be hard, durable, clean and be free from organic matter etc.
- Fine Sand should not contain any appreciable amount of clay and harmful impurities such as alkalis, salts, coal, decayed vegetation etc.

AGENDA

IS 383: 2016

भारतीय मानक Indian Standard IS 383 : 2016

Coarse and Fine Aggregate for Concrete — Specification

(Third Revision)

© BIS 2016

भारतीय मानक ब्यूरो BUREAU OF INDIAN STANDARDS मानक भवन, 9 बहादुरशाह ज़फर मार्ग, नई दिल्ली-110002 MANAK BHAVAN, 9 BAHADUR SHAH ZAFAR MARG NEW DELHI-110002 www.bis.org.in www.standardsbis.in

January 2016

Price Group 8

New Revision

2016

SAND TERMINOLOGIES

IS 383: 2016

This standard covers the requirements for <u>aggregates</u> for use in the production of <u>concrete</u> for normal structural purposes.

Aggregates can be :

- crushed or uncrushed,
- derived from natural sources, such as river terraces and riverbeds, glacial deposits, rocks, boulders and gravels,

 manufactured aggregates produced from other than natural sources
 New in 2016 Revision

IS 383: 2016

Fine Aggregate - Aggregate most of which passes 4.75 mm IS Sieve and contains only so much *coarser material* as permitted in *Clause 6.3.*

Natural Sand - Fine aggregate resulting from the natural disintegration of rock and which has been deposited by streams or glacial agencies. This may also be called as uncrushed sand.

Crushed Sand

Crushed stone sand - Fine aggregate produced by crushing **hard stone**.

Crushed gravel sand - Fine aggregate produced by crushing **natural gravel**.

Mixed Sand - Fine aggregate produced by blending *natural sand* and *crushed stone sand* or crushed gravel sand in suitable proportions.

Manufactured Fine Aggregate (Manufactured Sand) -

Fine aggregate manufactured from *other than* natural sources, by processing materials, using thermal or other processes such as separation, washing, crushing and scrubbing.

IS 383: 2016 – Grading Zone

	Percentage Passing					Percentag	ge Passing		
	Grading Zone						Gradin	ng Zone	
Sieve Size	Zone 1	Zone 2	Zone 3	Zone 4	Sieve Size	Zone 1	Zone 2	Zone 3	Zone 4
10 mm	100%	100%	100%	100%	10 mm	Nil oversize	Nil oversize	Nil oversize	Nil oversize
4.75 mm	90- 100%	90-100%	90-100%	95-100%	4.75 mm	100% 0-10% oversize	0-10% oversize	0-10% oversize	0-5% oversize
2.36 mm	60-95%	75- 100%	85-100%	95-100%	2.36 mm	78 ± 18%	100% 0-25% oversize	0-15% oversize	0-5% oversize
1.18 mm	30-70%	55-90%	75- <mark>100%</mark>	90-100%	1.18 mm	50 ± 20%	72 ± 18%	100% 0-25% oversize	0-10% oversize
600 µm	1 <mark>5-3</mark> 4%	35-59%	60-79%	80- <mark>100%</mark>	600 µm	24 ± 10%	47 ± 12%	70 ± 9%	100% 0-20% oversize
300 µm	5-20%	8-30%	12-40%	15-50%	300 µm	12 ± 7%	19 ± 11%	26 ± 14%	32 ± 18%
150 µm	<mark>0</mark> -10%	<mark>0</mark> -10%	<mark>0</mark> -10%	<mark>0</mark> -15%	150 µm	0% 0-10% undersize	0% 0-10% undersize	0% 0-10% undersize	0% 0-15% undersize
75 µm	0-3%	0-3%	0-3%	0-3%	75 µm	upto 3%	upto 3%	upto 3%	upto 3%

* Above Gradation is for " River Sand " . For Crushed stone Sand / Engineered Sand permissible limit on 150 micron IS sieve is increased to 20 %.

IS 383: 2016 - Graphs

as determined by the method described in IS 2386 (Part 1)

IS 383: 2016 – Zone 2

Table 9	– Fine Aggregates – Zone	(Demystifi	ed)	
Sieve Size	Cumulative Passing %	Mean %	Particle Size	Fraction %
10 mm	100%	100%	10 ~ 4 75 mm	5%
4.75 mm	90-100%	95%	4.75 - 2.26 mm	70/
2.36 mm	75-100%	88%	4.75 ~ 2.56 mm	1 70
			2.36 ~ 1.18 mm	16%
1.18 mm	55-90%	72%	1 19 - 0 6 mm	259/
600 um	35-59%	47%	1.10 ~ 0.0 mm	25%
		,0	600 ~ 300 μm	28%
300 µm	8-30%	19%		
150 um	0.10%	59/	300 ~ 150 μm	14%
ιου μπ	0-10%	J70	150 ~ 75 µm	3%
75 um	0-3%	2%	75 5	
m	/ -	_ / 3	75 µm ∼ Pan	2%

* Above Gradation is for "River Sand". For Crushed stone Sand / Engineered Sand permissible limit on 150 micron IS sieve is increased to 20%.

AGENDA

MANUFACTURING METHODOLOGY - Evolution

MANUFACTURING METHODOLOGY - Plan

MANUFACTURING METHODOLOGY – Flow Sheet

• Flow Sheet of Sand Plant:

Feed

Material: Basalt

Plant Feed PSD

[mm] [%]

MANUFACTURING METHODOLOGY - Primary

- Removal of clay:
 - Overburden, Weathered Rock fines and clay should be removed
 - These are removed by scalping before the primary crusher.
 - The scalped particles (generally Minus 20mm) report to a stockpile, and can be used in landfill/ sub layers or road etc.

- Primary and Secondary crushers
 - Generally Jaw Crushers and Cones do the reduction work in primary and secondary stages.
 - Jaw Crusher s are sized based on the largest feed material size and the capacity of the crushing plant.
 - A surge bin/ tunnel is recommended between the primary and secondary stages
 - Feeders with variable frequency drive help in balanced feeding to the crushers.
 - In low abrasive softer material, Impactors can be used as primary crusher to achieve highest reduction.

Manufacturing Sand – Good Practice

Rock Characteristics

- The first factor to consider is the cleanliness of the feed rock.
- All feed should be scalped as required at the primary crusher to remove any potential clay.
- Clay is detrimental to the strength of the concrete as it reacts with the

MANUFACTURING METHODOLOGY - Primary

<u>Removal of clay:</u>

skgc

- Overburden, Weathered Rock fines and clay should be removed
- These are removed by scalping before the primary crusher.
- The scalped particles (generally Minus 20mm) report to a stockpile, and can be used in landfill/ sub layers or road etc.

- Primary and Secondary crushers
 - Generally Jaw Crushers and Cones do the reduction work in primary and secondary stages.
 - Jaw Crusher s are sized based on the largest feed material size and the capacity of the crushing plant.
 - A surge bin/ tunnel is recommended between the primary and secondary stages
 - Feeders with variable frequency drive help in balanced feeding to the crushers.
 - In low abrasive softer material, Impactors can be used as primary crusher to achieve highest reduction.

MANUFACTURING METHODOLOGY - Classification

Technologies employed in India till date?

Manufacturing Sand (M-Sand) in India till today is limited to just cleaning of crusher dust i.e <u>removal of ultra-fines only</u>

MANUFACTURING METHODOLOGY – Advanced Technology

MANUFACTURING METHODOLOGY – Advanced Technology

• Use of Crushed Stone Sand

 L&T collaborated with Kemco, Japan to introduce World's most advanced Sand Manufacturing Technology in India and other select countries

MANUFACTURING METHODOLOGY – Japan Story

skgc

MANUFACTURING METHODOLOGY – Advanced Technology

Suppliers:

- L&T- Kemco in Dry Process

In Wet-Process... - Sandvik + CDE in wet process

2) "Wash offoct" by air: Residual dust on the particle surface is removed via air washi

(-) 150 L

-3mm PLASTER SAND MANUFACTURING METHOD

L&T- Kemco Air Screening Technology (e-Sepa) –

- Improved Screen Efficiency due to forces air circulation
- PLC Controls to adjust suction volume and blower speeds

lssues:

- Low Productivity of system due to recirculation of +3-5mm
- Flaky Shape
- Difficulty in handling material in excess of 2% moisture

ADAVANCED SAND MANUFACTURING SOLUTIONS

MANUFACTURING METHODOLOGY - Comparison

Comparison Of Sands - Different Technologies

Sand Quality	Cone Sand (Crusher Dust)	VSI Sand (Crusher Dust)	VSI -> Washed Sand	VSI -> Air Classifie d Sand	VSI-> Screen @3mm-> Classifier/ Washed	e7 Sand Plant	Natural River Sand
Overall Grading	Ţ	F	\$	9	\$	Precise Control	کی کی May Vary
Cleanliness / Ultra-fines	(Dusty	() Dusty	5	5		Precise Control	*Chances of Clay
Fineness Modulus	👎 뎍 Very Coarse	Less Coarse	Very Coarse	(† (†	ß	Precise Control	🔥 🍐 *May Vary
Shape	👎 👎 Very Flaky	👎 Less Flaky	Cess Flaky	Cess Flaky	Control Con	🚯 🏠 Equi-Dimensional	Spherical
Surface Finish/ Interlock	Very rough	ß	ß	€S	ß	ß	Smooth
Flow	Cone Smm	VSI 5mm	VSI 5mm		VSI 3mm	Air Screen	

• Technology and Options

MANUFACTURING METHODOLOGY

M/s. Shri Krishan Grit Co. Kotputli Customer Profile: Established building contractor from Delhi. Experienced in Crushing & Sand Manufacturing

Integrated to Metso make 3 Stage Plant (Jaw+ Cone+ VSI)

Product : Concrete Sand IS 383 Zone -II, 2.7FM

Feed Rate to e7 : 60 TPH Feed Material : Granite Feed Materia Size : 0/3.5 - 10 mm

Product Issue : High amount of 75-300 micron & Low 300-1.18micon due to typical material crystalline character.

Solution : Separate Screen to use to screen out excess 75-300 micron.

* This materials are good to be more in sand. Separately also salable for dry mix mortar.

MANUFACTURING METHODOLOGY – Final Quality

• TYPICAL GRADATION – Engineered Sand Plant

The plant settings can be controlled through automated system to get desired gradation (desired FM) ... including Plaster Sand

• Engineered Sand address all aspects of Sand Quality

PRECISE GRADATION ; PRECISE CONTROL OF ULTRA-FINES; IMPROVED SHAPE OFFERS LOT OF FLEXIBILITY TO PRODUCE SAND OF DESIRED TYPE

MANUFACTURING METHODOLOGY – Advanced Technology

IS 383: 2016 – Zone 2

Table	9 – Fine Aggregates – Zone	(Demystifie	ed)	
Sieve Size	Cumulative Passing %	Mean %	Particle Size	Fraction %
10 mm	100%	100%	10 ~ 4 75 mm	5%
4.75 mm	90-100%	95%		
2.36 mm	75 100%	88%	4.75 ~ 2.36 mm	7%
2.30 mm	737100%	00 70	2.36 ~ 1.18 mm	16%
1.18 mm	55-90%	72%	1.10.00	0500
600 µm	35-59%	47%	1.18 ~ 0.6 mm	25%
			600 ~ 300 μm	28%
300 µm	8-30%	19%	300 ~ 150 um	14%
150 µm	0-10%	5%		
75	0.00/		- 150 ~ 75 μm	3%
75 μm	0-3%	2%	75 µm ~ Pan	2%
skgc *	Above Gradation is for " River Sar permissible limit on	nd " . For Crushed sto 150 micron is increas	ne Sand / Engineered Sand sed to 20 %.	ASIA'S BREATEST BRANDS & LEADERS DEANIDS & LEADERS De wird wird wird wird wird wird wird wird

IS 383: 2016 – Grading Zone

	Percentage Passing					Percentag	ge Passing		
	Grading Zone						Gradin	ng Zone	
Sieve Size	Zone 1	Zone 2	Zone 3	Zone 4	Sieve Size	Zone 1	Zone 2	Zone 3	Zone 4
10 mm	100%	100%	100%	100%	10 mm	Nil oversize	Nil oversize	Nil oversize	Nil oversize
4.75 mm	90- 100%	90-100%	90-100%	95-100%	4.75 mm	100% 0-10% oversize	0-10% oversize	0-10% oversize	0-5% oversize
2.36 mm	60-95%	75- 100%	85-100%	95-100%	2.36 mm	78 ± 18%	100% 0-25% oversize	0-15% oversize	0-5% oversize
1.18 mm	30-70%	55-90%	75- <mark>100%</mark>	90-100%	1.18 mm	50 ± 20%	72 ± 18%	100% 0-25% oversize	0-10% oversize
600 µm	1 <mark>5-3</mark> 4%	35-59%	60-79%	80- <mark>100%</mark>	600 µm	24 ± 10%	47 ± 12%	70 ± 9%	100% 0-20% oversize
300 µm	5-20%	8-30%	12-40%	15-50%	300 µm	12 ± 7%	19 ± 11%	26 ± 14%	32 ± 18%
150 µm	<mark>0</mark> -10%	<mark>0</mark> -10%	<mark>0</mark> -10%	<mark>0</mark> -15%	150 µm	0% 0-10% undersize	0% 0-10% undersize	0% 0-10% undersize	0% 0-15% undersize
75 µm	0-3%	0-3%	0-3%	0-3%	75 µm	upto 3%	upto 3%	upto 3%	upto 3%

* Above Gradation is for " River Sand " . For Crushed stone Sand / Engineered Sand permissible limit on 150 micron IS sieve is increased to 20 %.

AGENDA

TEST REPORTS – ACC / Ambuja

Sieve Analysis of Crushed Sand

	Woight	Dorcont	Cumulativ	Cumulativ	Limits
size	Retained	Retained	e Percent Retained	e Percent Passing	Zone II
40 mm	0.00	0.00	0%	100%	100
20 mm	0.00	0.00	0%	100%	100
10 mm	0.00	0%	0%	100%	100
4.75 mm	63.00	6%	6%	94%	90 - 100
2.36 mm	221.00	22%	28%	72%	75 - 100
1.18 mm	256.00	26%	54%	46%	55 - 90
600 mic	130.00	13%	67%	33%	35 - 59
300 mic	119.00	12%	79%	21%	8 30
150 mic	68.00	7%	86%	14%	0 - 10
Pan	143.00	14%	100%	0%	0
Total Wt	1000.00	100%	100%	0%	

Specific	
Gravity	2.76
DLBD	1.663
Finess	
Modulus	3.2
Zone	I

-	-	
S	kgo	

M. Blue & Shape

	Ture	MBV	Silt content	Ecs	U
Area	туре	mg/g	%	sec	%
	Standard	0.5-1.75	Low is Good	Low is Good	U<45
Mumbai – baba	CRF	3.23	16.50	23.48	40.95
Mumbai Turbhe	CRF	5.17	10.50	25.76	40.98
Bombay Pada 1	CRF	3.03	14.10	25.39	42.52
Bombay Pada 2	CRF	3.12	20.10	24.62	39.89
Mumbai –Borivali	CRF	4.37	15.50	22.99	41.70
Japan	V7 Japan	1.51	10.70	14.75	44.03

Sieve Analysis of Natural Sand

	Woight	Porcont	Cumulativ	Cumulativ	Limits
sizo	Retained	Retained	e Percent	e Percent	
3120	Netameu	Netaineu	Retained	Passing	Zone II
40 mm	0.00	0.00	0%	100%	100
20 mm	0.00	0.00	0%	100%	100
10 mm	39.00	4%	4%	96%	100
4.75 mm	99.00	10%	14%	86%	90 - 100
2.36 mm	147.00	15%	29%	72%	75 - 100
1.18 mm	313.00	31%	60%	40%	55 - 90
600 mic	253.00	25%	85%	15%	35 - 59
300 mic	117.00	12%	97%	3%	8 30
150 mic	19.00	2%	99%	1%	0 - 10
Pan	13.00	1%	100%	0%	0
Total Wt	1000.00	100%	100%	0%	

Specific	
Gravity	2.65
DLBD	1.69
Finess	
Modulus	3.87
Zone	I

TEST REPORTS – Sai Rydam RMC

• Laboratory Trial results at Sai Rydam RMC

skgo

- Compressive Strength / Cement-Flyash Consumption
- > Natural Sand vs VSI Sand vs Crushed Sand / e7 Engineered Sand

Sr No	SOURCE		CEMEN	TATIOUS	COMPRESSIVE STRENGTH(MPA)		
Sr. NO.	Material		Cement	Flyash	7days	28days	
1	VSI Sand	CG-3	300	100	20.68	32.43	
2	VSI Sand	CG-4	338	112	30.35	42.32	
3	VSI Sand	CG-5	375	125	34.18	49.11	
1	Classified Sand	HG-3	300	100	28.27	50.47	
2	Classified Sand	HG-4	338	112	38.05	52.49	
3	Classified Sand	HG-5	375	125	41.13	57.59	
1	e7 Sand	DG-3	300	100	35.85	58.00	
1	e7 Sand	DG-4	338	112	39.36	62.88	
3	e7 Sand	DG-5	375	125	54.29	67.13	
1	Vaitarna River Sand	EG-3	300	100	21.08	36.31	
2	Vaitarna River Sand	EG-4	338	112	34.76	48.13	
3	Vaitarna River Sand	EG-5	375	125	38.44	54.88	
1	Local Crushed Rock fines	BG-3	300	100	18.57	32.98	
2	Local Crushed Rock fines	BG-4	338	112	32.89	43.59	
3	Local Crushed Rock fines	BG-5	375	125	32.90	46.95	

Laboratory Trial results

Code	Workability (mm)			Compressive Strength N/mm2		Bulk Density	Specific	Zone of	Temperatur	Cohesivity	Remarks	
	0	30	60	3 Days	7 Days	28 Days	(Kg/115)	Gravity	Sanu	e		
05.03.12/NS/01	110	40	0	22.50	28.41	33.28	1.69	3.03	I	30	Good	
05.03.12/CS/01	0	0	0	21.87	26.04	32.13	1.66	2.76	I	29	Satisfactory	
05.03.12/V7/01	130	75	40	28.87	33.90	37.53	1.60	2.73		29	Very Good	
06.03.12/NS/02	80	20	0	21.75	27.00	39.60	1.69	2.90	I	30	Good	
06.03.12/CS/02	0	0	0	20.79	25.23	36.23	1.65	2.78	I	30	Satisfactory	
06.03.12/V7/02	130	80	50	27.06	33.42	40.60	1.60	2.83	п	29	Very Good	
07.03.12/NS/03	110	30	10	23.70	29.33	42.96	1.68	2.97	I	29	Good	
07.03.12/CS/03	0	0	0	21.23	27.43	36.47	1.63	2.70	I	29	Satisfactory	
07.03.12/V7/03	130	70	40	29.35	33.42	46.24	1.60	2.78		29	Very Good	
09.03.12/NS/04	80	30	0	20.47	26.64	37.00	1.68	3.10	I	29	Good	
09.03.12/CS/04	0	0	0	19.44	23.45	33.23	1.65	2.68		28	Satisfactory	
09.03.12/V7/04	130	70	50	27.97	34.88	44.52	1.60	2.73	П	29	Very Good	

Compressive Strength Comparison

TEST REPORTS

skgc

TEST REPORTS - Mumbai

• Quality Sand of Mumbai Plant with improved Water absorption: 2.78

• Quality Sand of Mumbai Plant with improved Water absorption: 2.78

1. SIEVE ANALYSIS: AS PER IS 2386 PART 1-1963 RA 2011: LIMITS AS PER IS 383 -2016 Sample 2 ZONE I ZONEII ZONE III ZONE IV **CRF-**Produce 100.00 100 100 100 100 100.00 90-100 90-100 90-100 95-100 94.80 60-95 75-100 85-100 95-100 60.60 30-70 55-90 75-100 90-100 36.90 15-34 35-59 60-79 80-100 20.00 5-20 8-30 12-40 15-50 9.10 0.10 0-10 0.15 0-10 NOTE- For crushed stone sands, the permissible limit on 2.79 0.150 mm Sieves is increased to 20 %. This does not affect the 5 % allowance permitted in Cl.6.3 applying the other sieve sizes. 2. PHYSICAL TEST: IS 2386 PART 3 -1963 RA 2011

51.	C-TRADTBOTAN	RESULTS				
No.	Test conducted	Sample 1 CRF- Feed	Sample 2 CRF- Produce			
1	Water Absorption (%)	2.96	2.56			
2	Material finer than 75 µ (%)	9.80	6.70			
	his sector and the sector of t					

urbhe, Navi Mumb	al-400705.	State Indiana			CIN	1022010AEH1878PTCC	3203
HETAN R. RA	IKAR ACC Director	REDITED LABO	RATORY BASE	D ON ISO/IE	C 17025	Cedebrati	ng
TEST REPO	ORT NO. & DATE	R&D/LAB/SAN 21/02/2017	(/2016-17/SANG	239916/442	6	Ch	-
1. Name & Ad	dress of Customer	M/s. MAUER CA G4, Ankanksh Ch Teen Hath Naka,	RE SERVICES n, Neur Nuipada Thanz (West) 400	Police Station 602	•	T	3
2 Project / Sit		Self				1000	
1 Customer's	Reference	E Mail Did 083	02/2017			D	D
d Sample		And a state of the				CENTIFICATE	NO
D De	cription	Fine Aggregate					
ii) Qu	antity	25 Kg					
iii) Da	te of receipt	Acceptable			- I There	and a state of	-
IV) Co	I followed if any	15:2386 - 1961	Part - I & Part II	1, 15: 1542 1	992 ,13 2116 :	1980	
5. Tert metho	ina tour wear it with	18/02/2017					
o. Date of lei	ung	TPC	TREPORT	Section of the	All Contraction	C. Sector	
		Crushed Sand				Contraction of the second	
1. Sample		Finiter Sand			The second		
3. Dry Bulk I	emity (Loore) Kn lit	1.64			and the second		
4. Specific gr	avity	1 2.78			CR		
5 Sieve Analys	t#	1 1 1		I	Requiserent	Requimers	
TO OTTIF	Patsined	Cumulative WL	Cumulative %	46	ArPer	ALL STA	
IS. SIEVE	WL PIDL	Retained pms.	WL retained	Passing	13 1342 101	Manory mortar	100
	ne frage			100 00	hund	Conditional y service Call	1
40 mm	0.00	0.00	0.00	100.00	TRANSIT STATES	and the second second	1
20 mm	0.00	0.00	0.00	100.00	100.00		4
10 mm	0.00	0.00	0.00	100.00	95-100	100.00	4
4,75 mm	0.00	153.00	7.65	92.35	95-100	90-100	4
2.36 mm	123.00	667.00	33.35	66.65	90-100	40-100	-
1.18 mm	494.00	1161.00	38.05	41.95	20-63	3-70	-
200 micron	429.00	1590.00	79.30	7.50	0.15	0 - 50	
150 micron	254.00	1844.00	100.00	0.00	Contraction of		1
Passing	156.00	2000.00	100000		a starting the		-
150 micron	and the second second					The second	
weight of	2000.0	1000		1	- Inner and		-
sample(gms)	2000.0		2.71				
5. Fineness M	her Vol % (at 2 hrs)		3.39				
, Shi Contena	Wt %		2.79				
Water Abu	mtion %		4.10				
Free Moistu	re Content %		the second				
0 "Deleterio	us Materials %		-				
1. Bulkage %		and the second second	I DEL COTAL	T) Reecificati	an)		
OTF .	- Permissible limits	for Silt Content by	TOL STALLIN	and Sand A 1	5% for Crushed	3md (13. 383)	
tons.	- Permissible limits	for Silt Content by	With an interest of Ser	testing			
	This test report ref	ers only to the sar	and under the co	inditions speci	fied berein.		N
	This test report is	valid at the time o	at in part, without	the permissi	on of this labor	maxy. /	X
	This test report m	ay not be rest dout	report.	E. Janie		100	Java
	Any correction int	andaes uns teles	itation.			Vii	io yo
	* Test is not under t	ne scope of act of				AWIN	Derse
	17/mabl/phy/fa/SAN025	9916					-
S1/D/report 2016	d made provide and		And the second	hand	Bengaluru (L	aboratory)	P
All Englishing	Kalvan (l ab	oratory	Nagpur (Labor	atory)	+91-80-28354	803/4	-
on // aboratory)	Kalyan (Cas	00089	+91-0712-65000	and a star and a star	+91-0843184	4003	1000
on temporations	+91-0201-64	www.	01.808092861		San as a support		

- Gradation % Passing: -2.5mm ~93%; -1.18mm ~67%; -0.6mm~42%; 0.3mm ~21%; 0.15mm – 7.5% FM ~ 2.7
- Silt ~0.97%

٠

.

• Water Absorption ~2.78

TEST REPORTS – Plaster Application

OBSERVATION						
HO-788 RMP (River Sand)	HO 764 E7 Sand Plaster					
Water demand16 %	Water demand16 %					
Eassily Mixable	Need more efforts to mix.					
No sagging	No Sagging					
No Cracking observed up to 40mm thickness by	No Cracking observed up to 40mm thickness by					
Wedge tester	Wedge tester					
Dry Adhesion Strength after 1 day -0.28 MPA	Dry Adhesion Strength after 1 day -0.29 MPA					
Dry Adhesion Strength after 3 days -0.37 MPA	Dry Adhesion Strength after 3 days -0.39 MPA					
Dry Adhesion Strength after 7 days -0.51 MPA	Dry Adhesion Strength after 7 days -0.53 MPA					
Dry Adhesion Strength after 14 days 0.58	Dry Adhesion Strength after 14 days 0.62					
Photo after 4 days of application thickness -10mm	Photo after 4 days of application thickness -10mm					

Dry Mix Mortar

Cement Market – • 400 MTPA

Mortar Market -Consume 15% of total Cement Consumption.

 Ratio 1:5 (Cement : Rest ingredients) Total Mortar Market-

• 300 MTPA

• Growth 10%-12%

Category & Potential

RANDS & LEADERS

Flow Chart of Production Process

IS 383: 2016 – Grading Zone

		Percentag	e Passing	J		Percentage Passing					
		Gradin	g Zone			Grading Zone					
Sieve Size	Zone 1	Zone 2	Zone 3	Zone 4	Sieve Size	Zone 1	Zone 2	Zone 3	Zone 4		
10 mm	100%	100%	100%	100%	10 mm	Nil oversize	Nil oversize	Nil oversize	Nil oversize		
4.75 mm	90- 100%	90-100%	90-1 <mark>0</mark> 0%	95-100%	4.75 mm	100% 0-10% oversize	0-10% oversize	0-10% oversize	0-5% oversize		
2.36 mm	60-95%	75- 100%	85-100%	95-100%	2.36 mm	78 ± 18%	100% 0-25% oversize	0-15% oversize	0-5% oversize		
1.18 mm	30-70%	55-90%	75- <mark>100%</mark>	90-100%	1.18 mm	50 ± 20%	72 ± 18%	100% 0-25% oversize	0-10% oversize		
600 µm	1 <mark>5-3</mark> 4%	35-59%	60-79%	80- <mark>100%</mark>	600 µm	24 ± 10%	47 ± 12%	70 ± 9%	100% 0-20% oversize		
300 µm	5-20%	8-30%	12-40%	15-50%	300 µm	12 ± 7%	19 ± 11%	26 ± 14%	32 ± 18%		
150 µm	<mark>0</mark> -10%	<mark>0</mark> -10%	<mark>0</mark> -10%	<mark>0</mark> -15%	150 µm	0% 0-10% undersize	0% 0-10% undersize	0% 0-10% undersize	0% 0-15% undersize		
75 µm	0-3%	0-3%	0-3%	0-3%	75 µm	upto 3%	upto 3%	upto 3%	upto 3%		

* Above Gradation is for " River Sand " . For Crushed stone Sand / Engineered Sand permissible limit on 150 micron IS sieve is increased to 20 %.

Plant photos.

Plant Photos

Products.

Products.

Applications.

© Ambuja Cements Ltd. 2010

Activity Name - Mumbai AKC

Q & A

- Mr. Sanjay Nikam
- Aggregates Manufacturer Association (India)
- **S** +91 9820239466
- Suru0913@gmail.com

